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a b s t r a c t

Conventional displacement-based methods for estimating stress intensity factors require
special quarter-point finite elements in the first layer of elements around the fracture tip
and substantial near-tip region mesh refinement. This paper presents a generalized form
of the displacement correlation method (the GDC method), which can use any linear or
quadratic finite element type with homogeneous meshing without local refinement. These
two features are critical for modeling dynamic fracture propagation problems where loca-
tions of fractures are not known a priori. Because regular finite elements’ shape functions
do not include the square-root terms, which are required for accurately representing the
near-tip displacement field, the GDC method is enriched via a correction multiplier term.
This paper develops the formulation of the GDC method and includes a number of numer-
ical examples, especially those consisting of multiple interacting fractures. We find that the
proposed method using quadratic elements is accurate for mode-I and mode-II fracturing,
including for very coarse meshes. An alternative formulation using linear elements is also
demonstrated to be accurate for mode-I fracturing, and acceptable mode-II results for most
engineering applications can be obtained with appropriate mesh resolution, which remains
considerably less than that required by most other methods for estimating stress
intensities.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The stress intensity factor (SIF) is an important concept in fracture mechanics for relating stress and energy release rate at
the fracture tip to loading and crack geometry. Although closed-form analytical solutions are available for a number of special
fracture-load configurations (many of which have been compiled in [1]), SIF’s are often calculated in the context of numerical
methods, especially the finite element method (FEM) for arbitrary fracture-load configurations. Several methods are available
for calculating or estimating SIF’s with the FEM, such as the J-integral [2] and its variants, the stiffness derivative technique
[3], and a suite of methods based on the interpretation of near-tip nodal displacements. In the last category, there are at least
three variants, including the displacement extrapolation method [4–7], the quarter-point displacement method [8], and the
displacement correlation method [9,10]. These methods and others have been compared in a number of studies [e.g. 5,11–
14]. One of the most significant advantages of the displacement-based methods is the simple formulation. Although the
displacement-based methods were often found to be less accurate than the J-integral or the stiffness derivative method
under certain conditions, the accuracy remains acceptable for most engineering applications [e.g. 5,14]. Many of the displace-
ment-based methods were developed in the 1970s and 1980s in tandem with various special ‘‘quarter-point’’ finite element
types [15–19] and transition elements [20] used in these methods. Though few new developments have been reported on the
displacement-based methods in the intervening decades [21], they continue to be widely used.
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The J-integral as well as its variants (e.g. M-integral) and the displacement-based methods all require accurate resolution
of near-tip displacement/stress/strain fields. Therefore special element types (e.g. quarter-point elements) and/or near-tip
element refinement are usually used as accuracy enhancement/assurance measures. The present study is motivated by engi-
neering applications where such enhancement is impractical in terms of computational cost but a moderate error margin
(e.g. 10%) is acceptable. The simulation of hydraulic fracturing in natural fracture systems represents this class of applica-
tions and is the direct motivation for the current study [22]. Simulating a hydraulic fracturing process usually involves mod-
eling multiple cracks propagating along arbitrary paths, so the locations of the crack tips are not specified a priori. Employing
any near-tip enhancement measures necessitates heterogeneous meshing, which is theoretically possible to handle but re-
quires complex variable mapping between meshes every time a fracture advances. This is extremely costly for hydraulic frac-
turing simulations because very small time steps have to be adopted to handle the wide spectrum of length-scales that have
to be resolved, spanning from tens of micrometers (the aperture width of typical rock joints) to hundreds of meters (dimen-
sion of the reservoir). Therefore, homogeneous and relatively coarse meshing without local refinement or frequent reme-
shing and variable mapping is the only viable option. Additionally, because we have to frequently handle the situation
where two fractures are close to each other before they intersect, it is desired to only use information in the first layer of
element surrounding a fracture tip. On the other hand, owing to the inherently high variability in rock properties and the
high uncertainty in the determination of rock properties, an error of 10–20% in the estimation of SIF is considered well
acceptable.

The goal of this study is to develop and verify a displacement-based method, termed the generalized displacement
correlation (GDC) method for estimating SIF, which uses regular finite element types and does not require local mesh refine-
ment. In the currently paper, we first review the mechanical and mathematical principles behind the original displacement-
based methods in a generalized context in Section 2. Compared with the original derivation of these methods, the loading
condition is generalized by including crack surface traction and the meshing scheme is generalized by circumventing the
dependency on the specific shape functions of quarter-point elements. This new GDC formulation encompasses the original
formulation based on quarter-point elements as a special case. Subsequently, we develop the new generalized formulation in
Section 3 and further enhance its accuracy in Section 4 by introducing an empirical correction multiplier term. In Section 5,
we test the new method against a number of fracture-load configurations with an emphasis on cases with inter-crack inter-
actions, a situation critical to our hydraulic fracturing simulator development effort. The numerical examples in Sections 4
and 5 use the same Poisson’s ratio and tip-region mesh configuration and use meshes based on a regular grid. The sensitivity
of the results to the Poisson’s ratio, near-tip mesh configurations, and mesh perturbation are evaluated in Sections 6 and 7.

2. Review of displacement-based methods in a generalized framework

Consider the two-dimensional (2D) continuum (linearly elastic and isotropic) around a crack tip as shown in Fig. 1, with
far-field normal (rf) and shear (sf) stress existing along with crack surface traction (rc and sc). Note that ‘‘traction’’ in this
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paper refers to stress distributed along fracture surface while the same term is often used in cohesive zone models for a
different meaning. Stresses rf, sf, rc, and sc are independent of each other, but the spatial variation of each of them is not
considered. Their values can be either positive or negative, with the arrows in Fig. 1 indicating the positive stress directions.
According to the superposition principle, the mechanical response of this system is the sum of the responses of the three
cases [(a)–(c)] to the right of the equal sign in the figure. Case (a) and case (b) respectively correspond to the classical bound-
ary/loading conditions for mode-I and mode-II fracturing, whereas in case (c) the crack surface traction balances the far-field
stress. Only the stress conditions in the two former cases [(a) and (b)] induce stress/strain singularities in the near-tip region,
while the latter case (c) generates homogeneous stress and displacement fields which contribute to the overall mechanical
response but not the near-tip stress singularity. The loading conditions in case (a) and case (b) are the symmetric and skew-
symmetric (antisymmetric) parts of the load that induce a near-tip stress singularity, respectively. Much of the development
of fracture mechanics disregards the tractions along the crack surface, so case (a) and case (b) have been the focus of previous
studies. In certain applications such as hydraulic fracturing, the pressure inside the fractures is the main mechanism for driv-
ing fracture extension with rc < rf < 0. Under such conditions, the stress condition in case (c) significantly contributes to the
mechanical responses of the system and cannot be overlooked.

With higher-order terms omitted, the displacement field (relative to the crack tip displacement) induced by loading case
(a) is

ua
r
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h

( )
¼ KI

G

ffiffiffiffiffiffiffi
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2p

r cos h
2
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( )
b� cos2 h

2

� �
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where KI is the mode-I stress intensity factor; G is the shear modulus of the medium; b is a constant depending on whether
this is a plane strain (b = 2[1 � m] with m being the Poisson’s ratio) or a plane stress (b = 2/[1 + m]) problem. It we assume that
the elasticity parameters (G and b) are constants for a given problem, the equation can be simplified as
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where f a
r ðhÞ and f a

h ðhÞ are functions of the angular coordinate (h) of the point where the displacement is measured. The effects
of the elasticity parameters are incorporated into these two functions and they are considered constants for the purpose of
this section. We can also write the corresponding equations for case (b), namely mode-II fracturing as
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Loading in Fig. 1c induces a homogeneous stress field quantified by rc, rx, and sc. rx is the normal stress component (not
denoted in Fig. 1) in the direction along the fracture tip, and is typically not concerned in fracture mechanics. The displace-
ment induced by this homogeneous stress field is

uc
r

uc
h

( )
¼ r

f c
r ðh;rc;rx; scÞ

f c
h ðh;rc;rx; scÞ
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or

Fig. 1. The near-tip region of a 2D medium and the decomposition of fracture modes according to the superposition principle. The polar coordinate system
used in this study is denoted in the figure. Fracture openings in this and other examples are exaggerated for illustration purposes.
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for any known stress state (rc,rx,sc). The explicit expression of functions f c
r and f c

h can be derived based on Hooke’s law, but it
requires knowledge of the stress state and is not pursued here. Note that the fc terms also encompass the effects of small
rigid-body rotation of the system, but this is not explicitly discussed in the following development. The most important
implication of Eq. (5) for the scope of this paper is that along any ‘‘ray’’ direction originating from the fracture tip, the dis-
placement of any point relative to that of the tip is linearly proportional to its distance to the crack tip under the homoge-
neous stress condition.

Combining Eqs. (2), (3), and (5), we can write the overall displacement field for the arbitrary loading condition in Fig. 1 as
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with KI and KII being the unknowns while ur and uh can be obtained from FEM solutions.
In order to apply any displacement-based stress intensity calculation method, the medium containing the fracture needs

to be modeled using a finite element mesh. Quarter-point elements, with the inverse square root singularity embedded by
shifting the mid-edge nodes on the ray edges to the quarter-points, are usually employed as the first layer of elements
around the tip as shown in Fig. 2. Displacements along the crack face (h = p) at nodes A and B are obtained by solving the
finite element model. Noticing that f a

r ðpÞ ¼ 0 and f b
h ðpÞ ¼ 0, we have
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where lE is the length of the element edge (lE = |TB| = 4|TA| in this particular case). By applying basic linear equation manip-
ulation/solving techniques, we can eliminate the terms involving f c

r or f c
h and obtain
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which is the core formulation for the displacement correlation method. The symmetry of the system can be exploited to
improve the accuracy of the results with
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Fig. 2. Quarter-point element configurations near a crack tip.
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The formulation for the so-called quarter-point displacement method

KI ¼
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hffiffiffiffi

lE

p
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and KII ¼
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rffiffiffiffi
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p
f b
r ðpÞ

ð12Þ

is valid only if the terms involving f c
r and f c

h in Eq. (6) vanish, implying the loading of the system is the sum of case (a)
and case (b) excluding case (c) in Fig. 1, i.e. there is no traction along the crack faces. This limitation of the quarter-point
displacement method was described by Tracey [10] but has largely been neglected, as it does not apply to the typical loading
conditions in mechanical engineering, where crack surface tractions are absent. Although this limitation of the quarter-point
displacement method does not lead to inaccuracies in many studies comparing these two methods in the context of mechan-
ical engineering [12,13,19,23], it is highly deleterious if the method is to be used for hydraulic fracturing modeling or similar
problems. The displacement extrapolation method suffers similarly since the loading scenario shown in case (c) of Fig. 1 is
not supported in the assumptions underlying that method. Based on this, we select the displacement correlation method as
the basis for further development.

The original development of the displacement correlation method and the quarter-point displacement method derive the
same equations as Eqs. (11) and (12), respectively, through a different procedure. The purpose of the above development is to
provide the necessary basis for the development of the new generalized method in the next section.

3. Formulation of the generalized method

From the procedure in Section 2, we see that the core of the displacement correlation method is to solve equations of the
following form

ui ¼ f a
i

ffiffiffiffi
ri
p

KI þ f b
i

ffiffiffiffi
ri
p

KII þ rif c
i ð13Þ

where ui, f a
i , and f b

i are known from FEM solutions of the specific fracture-load configuration and near-tip region closed-form
solutions; KI and KII are the two unknowns to solve; f c

i can be removed by the following procedure. Because f c
i is a function of

the angular coordinate h but not the radial coordinate r, we can use known displacements (either ur or uh) and other
information (ri, f a

i , and f b
i ) at two points with the same angular coordinate h to eliminate the f c

i term. The symmetry and/
or skew-symmetry of f a

i and f b
i can also be used to directly eliminate KI or KII when solving for the other. The choice of

the four displacement components in obtaining Eqs. (7)–(10), namely uA
r ¼ urðlE=4;pÞ, uB

r ¼ urðlE;pÞ, uA
h ¼ uhðlE=4;pÞ, and

uB
h ¼ uhðlE=4;pÞ allows this approach. ri = lE/4 and ri = lE are used for convenience to exploit nodal displacements in the quar-

ter-point elements. However, displacements at other points (not necessarily nodes) can be used instead to solve Eq. (13).
Through this generalization of the original displacement correlation method, the special quarter-point element and near-

tip region mesh refinement can be eliminated, and we can substitute the displacements at appropriate reference points and
other necessary information into Eq. (13) to solve for SIF’s. In the selection of the reference points, we first consider points
with h = ±p, consistent with the original displacement correlation method, where the features of f a

r ðpÞ ¼ 0 and f b
h ðpÞ ¼ 0 sim-

plifies solution. If quadratic elements (i.e. shape functions are second-degree polynomials) are used, we can use r = lE/2 and
r = lE, which are both within the first layer of elements about the crack tip. Appealing to symmetry, we have
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Solving the above equations yield the formulation for the generalized displacement correlation (GDC) method as

KI ¼
2uhðlE=2;pÞ � 2uhðlE=2;�pÞ � uhðlE;pÞ þ uhðlE;�pÞ
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where the constants f a
h ðpÞ ¼ f b

r ðpÞ ¼ �b=
ffiffiffiffiffiffiffi
2p
p

G follow from Eqs. (1)–(3). This set of equations does not require quarter-point
elements around the crack tip, but does require quadratic elements (6-node triangle or 8-node quadrilateral in 2D). Since the
objective of this paper is to generalize the displacement correlation method, we further consider finite element models
where linear elements (3-node triangle or 4-node quadrilateral) are used. Under this condition, Eqs. (15) and (16) result
in zero SIF’s owing to the linear shape functions. Using displacements across two layers of elements around the tip (i.e. at
r = lE and r = 2lE) and replacing lE/2 in the above equations with lE and lE with 2lE solve this problem, but renders the method
impractical for modeling fractures with arbitrary paths. Fig. 3 shows two problematic scenarios commonly addressed
through FEM modeling of fractures: (a) sawtooth-shaped fractures typical in perturbed meshes where minor perturbation
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to node locations in the undeformed mesh is adopted to introduce randomness into fracture paths, and (b) a fracture having
changed the direction of propagation. In both scenarios, the locations of points (2lE, p) and (2lE, �p) are ambiguous, making
the method above inapplicable. To address this, we use displacements of points with h = �p/2, 0, and p/2 and r = lE and
r = 2lE, and also exploit the symmetry of f a

r and f b
h and skew-symmetry of f a

h and f b
r to obtain

urðlE;p=2Þ þ urðlE;�p=2Þ ¼ 2
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r ðp=2Þ ¼ ð2b� 1Þ=4

ffiffiffiffi
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G and f b
h ð0Þ ¼ ð1� bÞ=

ffiffiffiffiffiffiffi
2p
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G. We term the GDC method based on Eqs. (15) and
(16) ‘‘Method A’’, and that based on Eqs. (18) and (19) ‘‘Method B’’. Method B can be applied to any finite element types, and
is therefore ‘‘more general’’ than Method A. Method A only requires displacements across one layer of elements around the
tip while Method B requires two layers. Neither Method A nor Method B requires a special meshing scheme at the near-tip
region, such as a mesh type or mesh resolution different from that of the remainder of the computation domain. Both meth-
ods are easy to implement in existing FEM packages. Note that the points where displacements are used in the calculation
need not to be nodes of the finite element mesh.

4. Enhancement of the generalized method

Error in the calculated stress intensity factors using the GDC method can be attributed to at least two sources:

(1) The inability of the adopted finite element’s shape functions to accurately represent the near-tip displacement field.
The quarter-point element family was originally formulated for the very purpose of better representing the near-tip
field by including a square-root term in the shape functions in the ray directions.

(2) Omission of higher-order terms in Eqs. (1) and (3). These equations are accurate at the near-tip region, where the dis-
tances to the fracture tip and other sources inducing high displacement gradient are much smaller than the length of
the fracture itself. In the GDC method, displacements at distances lE and 2lE (or lE/2 and lE) are used. Therefore, error
increases with the ratio of element size to the fracture length.

In order to demonstrate the accuracy of the GDC method, we use the proposed method on the simplest fracture system,
i.e. a finite-length fracture in an infinite domain as shown in Fig. 4. The fracture system considered here is straight crack of
length 2a in a 2D infinite medium. Since most FEM models can accurately represent the linear displacement field induced by
the loading condition in Fig. 1c, only the loading conditions in Fig. 1a and b are combined and modeled. However, the effects
of homogeneous stress fields are appropriately handled in the formulations of the GDC method, and the superposition of

(a) (b)
Fig. 3. Two common scenarios where the locations of points (2lE, p) and (2lE, �p) are ambiguous.
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such a field would not affect the calculated SIF’s. The near-tip mesh configuration can have a considerable effect on the accu-
racy of the original displacement-based methods (e.g. [23]); in all the numerical examples in the current and next section,
the mesh configuration shown in Fig. 5a is used, and fracture tips are located at nodes shared by eight triangular elements.
The other mesh configurations shown in Fig. 5 will be investigated in Section 6. In linearly elastic problems, the shear
modulus of the medium, G does not affect the calculated stress intensity factors and thus can be arbitrarily selected. The
model is assumed to be a plain-stress problem with a Poisson’s ratio of 0.2. The effects of the Poisson’s ratio will also be dis-
cussed in Section 6. The finite element mesh is sufficiently large (with each dimension longer than 100a) such that the effects
of the finite boundaries are minimal and the domain can be considered infinite. We use quadratic (6-node) triangle elements
with full-integration (three Gaussian points) for both Methods A and B in this study, although Method B is not restricted to
quadratic elements.

The theoretical solutions for the stress intensity factors in this crack configuration are KI ¼
ffiffiffiffiffiffi
pa
p

ry and KII ¼
ffiffiffiffiffiffi
pa
p

s.
Numerical solutions of the SIF’s, denoted by K 0I and K 0II are obtained by solving finite element models with various levels
of mesh resolutions (quantified by a/lE, the ratio of the half crack length to element length) and substituting the obtained
displacement values into Eqs. (15) and (16) or (18) and (19). We then seek an enhancement measure in the form of a ‘‘cor-
rection multiplier’’ to be added to Eqs. (15), (16), (18), and (19). We will test the performance of the corrected/enhanced
formulation on a number of more complex crack systems in next section for Methods A and B. The values of CI ¼ KI=K 0I
and CII ¼ KII=K 0II , which are the multipliers that need to be applied to Eqs. (15) and (16) or (18) and (19), respectively to
correct the numerical solutions are shown in Fig. 6 as functions of a/lE. The correction factors are significantly larger than
unity, since the 6-node triangular finite element cannot accurately represent the near-tip displacement field. CI and CII both
converge to constant values as the element size becomes smaller relative to the crack length. We can fit the discrete data
points with the following empirical relationship

Fig. 4. A finite-length crack in an infinite medium.

Fig. 5. Four mesh configurations considered in this study. The conventional six-node triangle element is used in all the numerical examples of the present
study but the mid-edge node is not shown in this figure.
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C ¼ a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2lE=a

p ð20Þ

which has a similar format as the correction term used in [24]. The regression results are

CA
I ¼

1:555ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:640lE=a

p ð21aÞ

CA
II ¼

2:831ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1:163lE=a

p ð21bÞ

CB
I ¼

1:260ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:138lE=a

p ð21cÞ

CB
II ¼

1:727ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:845lE=a

p ð21dÞ

where the superscripts A and B of CI and CII indicate whether the correction multipliers are for Method A or Method B. The
coefficients of determination (R2) for all regressions are greater than 0.99.

The correction multipliers calculated using Eq. (21) converge but not to unity. This appears counterintuitive because even
though the shape functions (quadratic for the above calculations and linear if linear elements were used) of a single element
does not accommodate the square root terms in Eq. (6), refining the mesh (with smaller lE) should result in piecewise
quadratic shape functions for the mesh as a whole better representing the displacement field. However, regardless of the
refinement level, only displacements within the first one (Method A) or two (Method B) layers of elements around the frac-
ture tip are used. As the mesh is refined, the reference points where displacement information is used in the calculation are
closer to the fracture tip. For infinitesimal elements, this mechanism can eliminate the error induced by the second source of
error, but not the first. A similar phenomenon exist for the original displacement-based methods: Numerous studies have
observed that errors of these methods do not converge to zero as the near-tip mesh is refined [12,13,18,19,23] and an expla-
nation was offered by Harrop [25].

5. Accuracy of the generalized method for different fracture configurations

The values as well as the regression formula of the correction multipliers in Section 4 are obtained for a specific fracture-
load configuration. Considering that the main purpose of this correction term is to correct errors caused by the finite ele-
ments’ inability to accurately represent the near-tip displacement field described by Eqs. (1)–(3), we hypothesize that the
same multipliers can be applied to all other crack-load configurations and obtain reasonable SIF results. In this section,
we apply the correction multipliers obtained from the special case in Section 4 to a spectrum of fracture configurations
to test this hypothesis. Special attention is paid to coarse meshes and effects of interference between neighboring fractures
and between fractures and free surfaces. Achieving acceptable accuracy under these conditions is crucial for managing the
computational cost of the simulation of dynamic fracture propagation in complex fracture systems. Four test cases for which
closed-form solutions of SIF’s exist are carefully selected: The first case embodies the interference between fracture tip and
free surface boundary; the second deals with heterogeneous stress field; the last two cases represent interactions between
neighboring fractures. Both mode-I and mode-II SIF’s are considered whenever applicable. Both Method A and Method B are

(a) (b)
Fig. 6. The effects of the mesh resolution on the correction multipliers. (a) Results for Method A; (b) results for Method B.
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evaluated for the first case in Section 5.1. Since the mathematical and mechanical principles behind these two methods are
similar, only the more general Method B is considered for the other three fracture-load configurations.

5.1. Center-cracked infinite strip with a finite width

Consider a center-cracked strip with an infinite length but finite width 2b. The crack is 2a long and perpendicular to the
longitudinal direction of the strip as shown in Fig. 7a. The strip is subjected to a tensile stress r in the longitudinal direction
and a uniformly distributed shear stress s along the fracture faces, inducing mode-I and mode-II stress concentration, respec-
tively. The stress intensity factors are

KI ¼ r
ffiffiffiffiffiffi
pa
p

FIða=bÞ and KII ¼ s
ffiffiffiffiffiffi
pa
p

FIIða=bÞ ð22Þ

where FI and FII are the fracture-configuration correction factors that can be estimated using the modified Koiter’s formula
[1]:

FIða=bÞ ¼ FIIða=bÞ ¼ ½1� 0:025ða=bÞ2 þ 0:06ða=bÞ� cos
pa
2b

	 
�1=2
ð23Þ

with a relative error of less than 0.1% for any a/b value. In this and other examples, if FI and FII are close to unity, it means this
fracture-load configuration is similar to the reference configuration of a single fracture in an infinite plane.

To apply the GDC method, the strip is discretized into a finite element mesh of a length that is more than 12 times longer
than its width, which is found to sufficiently approximate the infinite length according to a sensitivity analysis. Different
levels of mesh refinement with b/lE ranging from 4 to 64 as well as various crack length-to-strip width ratios, i.e., a/
b = 0.125, 0.25, 0.50, 0.75, and 0.875 are adopted to investigate the effects of these two factors. Due to the symmetry of
the crack and mesh configuration, the tensile stress r does not contribute to the calculated KII and s does not contribute
to KI. In all the numerical examples in Section 4, a Poisson’s ratio of 0.2 and the crack tip mesh configuration shown in
Fig. 5a (eight triangle elements connected to the tip) are used. The effects of the Poisson’s ratio and crack tip mesh config-
uration will be studied in Section 6. To allow precise comparison, the calculation results of the GDC method (both Method A
and Method B) with the correction multipliers computed using Eq. (21) applied, as well as the theoretical solution based on
Eq. (23) are shown in Tables 1A–2B. Note that the values of FI and FII, instead of the stress intensity factors KI and KII are
shown. FI and FII can be considered normalized values of the SIF’s. Due to the relationships described in Eq. (22), the relatively
errors for KI and KII are the same as those for FI and FII, respectively.

The results show that Method B for mode-I fracturing and Method A for both mode-I and -II are fairly accurate for all the
scenarios considered, including those with very coarse meshes. The relative errors are generally smaller than 2% with few
exceptions. The accuracy of Method-B for mode-II fracturing seems to be dependent on the fracture geometry and mesh
resolution. For b/lE = 4 with a/b = 0.5, b/lE = 8 with a/b = 0.75, and b/lE = 16 with a/b = 0.875, erroneous results are obtained.

Fig. 7. Center-cracked infinite strip with a finite width. (a) The crack configuration; (b) the mesh for the case where b = 8lE and a/b = 0.75 (with opening of
the fracture exaggerated). The reference points used by Method A and Method B are indicated in the figure.
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In these three situations, the fracture tip is two elements away (i.e. (b � a)/lE = 2) from the lateral boundary. One of the dis-
placement components used in Eq. (19), uh(2lE, 0) happens to be at the lateral boundary. The mechanical response at this
point is substantially affected by the free-surface boundary condition and violate an assumption of the GDC method. This
is not an issue for Method A or the calculation of KI using Method B because none of the displacement components used
in Eqs. 15, 16, and (18) is at the boundary. At the same mesh refinement level, if the distance between the crack tip and
the lateral free-surface boundary is 4lE instead of 2lE, the relative error for KII (Method B) is approximately between 20%
and 40%, which though suboptimal for typical mechanical engineering applications is often acceptable for geo-science or
geo-engineering scenarios due to the high aleatoric uncertainty in geo-systems. Nevertheless, if the crack tip is 6lE or farther
away from the free surface, the error drops below 10% for KII by Method B.

5.2. Three-point bending beam with a notch at mid-span

Consider a beam specimen with a span-to-height ratio of s/b = 4 with a notch of length a cut at the mid-span as shown in
Fig. 8. The beam is subjected to a mid-span force P. Due to the symmetry of the configuration, the mode-II stress intensity
factor is zero, and for mode-I

Table 1A
Calculated FI values using the GDC method (Method A) for the center-cracked infinite strip.

a/b FI, numerical result Relative error (%) FI(a/b) Eq. (23)

b/lE = 4 8 16 32 64 b/lE = 4 8 16 32 64

0.125 N/Aa N/Aa 1.011 1.004 1.007 N/Aa N/Aa 0.1 �0.6 �0.2 1.009
0.25 N/Aa 1.038 1.032 1.036 1.040 N/Aa �0.1 �0.7 �0.3 0.1 1.039
0.50 1.168 1.171 1.179 1.186 1.189 �1.5 �1.3 �0.6 0.0 0.3 1.186
0.75 N/Aa 1.595 1.612 1.622 1.628 N/Aa �1.8 �0.8 �0.1 0.2 1.624
0.875 N/Aa N/Aa 2.271 2.288 2.300 N/Aa N/Aa �1.3 �0.5 0.0 2.300

a N/A, numerical results unavailable due to the incompatibility between the a/b value and the mesh configuration.

Table 1B
Calculated FI values using the GDC method (Method B) for the center-cracked infinite strip.

a/b FI, numerical result Relative error (%) FI(a/b) Eq. (23)

b/lE = 4 8 16 32 64 b/lE = 4 8 16 32 64

0.125 N/A N/A 1.008 1.011 1.009 N/A N/A �0.1 0.2 0.0 1.009
0.25 N/A 1.036 1.040 1.038 1.037 N/A �0.3 0.1 �0.1 �0.1 1.039
0.50 1.196 1.186 1.182 1.183 1.184 0.8 0.0 �0.4 �0.3 �0.2 1.186
0.75 N/A 1.640 1.618 1.617 1.619 N/A 1.0 �0.4 �0.5 �0.3 1.624
0.875 N/A N/A 2.325 2.295 2.291 N/A N/A 1.1 �0.2 �0.4 2.300

Table 2A
Calculated FII values using the GDC method (Method A) for the center-cracked infinite strip.

a/b FII, numerical result Relative error (%) FII(a/b) Eq. (23)

b/lE = 4 8 16 32 64 b/lE = 4 8 16 32 64

0.125 N/A N/A 1.013 1.000 1.006 N/A N/A 0.3 �0.9 �0.3 1.009
0.25 N/A 1.040 1.030 1.038 1.045 N/A 0.1 �0.8 �0.1 0.6 1.039
0.50 1.165 1.172 1.188 1.201 1.208 �1.8 �1.2 0.2 1.2 1.8 1.186
0.75 N/A 1.579 1.621 1.645 1.658 N/A �2.8 �0.2 1.3 2.1 1.624
0.875 N/A N/Aa 2.241 2.294 2.323 N/A N/A �2.6 �0.3 1.0 2.300

Table 2B
Calculated FII values using the GDC method (Method B) for the center-cracked infinite strip.

a/b FII, numerical result Relative error (%) FII(a/b) Eq. (23)

b/lE = 4 8 16 32 64 b/lE = 4 8 16 32 64

0.125 N/A N/A 1.021 0.994 1.001 N/A N/A 1.1 �1.6 �0.8 1.009
0.25 N/A 1.027 1.018 1.031 1.041 N/A �1.2 �2.0 �0.8 0.2 1.039
0.50 0.014b 0.972 1.132 1.181 1.200 �98.8 �18.1 �4.5 �0.4 1.2 1.186
0.75 N/A �0.841b 1.124 1.502 1.610 N/A �152 �30.8 �7.6 �0.9 1.624
0.875 N/A N/Aa �1.710b 1.432 2.070 N/A N/A �174 �37.8 �10.0 2.300

b Degenerate results; see discussion below. The Bold typeface used in other tables highlights degenerate results owing to similar reasons.
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KI ¼
3Ps

2b2

ffiffiffiffiffiffi
pa
p

FIða=bÞ ð24Þ

where FI(a/b) is the fracture-configuration correction factor, with similar meaning to its counterpart in Eq. (22) but different
values. Its value can be calculated using the following dimensionless regression equation proposed by Srawley [26] with a
relative error smaller than 0.5%

Fða=bÞ ¼ 1:99� a=bð1� a=bÞ½2:15� 3:93a=bþ 2:7ða=bÞ2�
ð1þ 2a=bÞð1� a=bÞ3=2 ffiffiffiffi

p
p ð25Þ

To test the accuracy of the GDC method on this configuration, we perform FEM analysis with different levels of mesh refine-
ment and different notch lengths. The results of Method-B are summarized in Table 3 in a manner similar to that of Tables 1
and 2. The results are generally accurate. In the worst case scenario, where the height direction of the beam is discretized
into four element, the relative error is 11.7%, which remains acceptable for many engineering applications. As the mesh is
refined, the numerical results for each geometrical configuration generally converge to the closed-form solution with some
minor fluctuation (a few tenths of a percent), which is within the 0.5% error inherent in the closed-form solution. The accu-
racy is compromised when the notch is short or long compared with the beam height (e.g. a/b = 0.125 or 0.875). In both
cases, the points where the displacements are used in the GDC method have similar distances to the notch tip and to the
lower or upper free surface of the beam and are not within the near-tip region.

5.3. Two finite-length fractures along a single line

In Sections 5.3 and 5.4, we investigate the accuracy of the GDC method for scenarios with multiple fractures interacting
with each other. We first consider the configuration shown in Fig. 9, where two finite-length fractures along a single line
existing in an infinite plane. This configuration tends to strengthen the stress intensity at the two tips A and B, compared
with the configurations whether each crack exists alone in an infinite plane. For any tip under a given far-field stress con-
dition (r and s), the stress intensity factors (mode-I and mode-II) are dependent on certain geometrical features of the sys-
tem, and the following closed-form solutions are available [1]

KA
I ¼ r

ffiffiffiffiffiffi
pb
p

FA
I ða=b; c=bÞ ð26aÞ

KA
II ¼ s

ffiffiffiffiffiffi
pb
p

FA
IIða=b; c=bÞ ð26bÞ

KB
I ¼ r

ffiffiffiffiffiffi
pa
p

FB
I ða=b; c=bÞ ð26cÞ

and KB
II ¼ s

ffiffiffiffiffiffi
pa
p

FB
IIða=b; c=bÞ ð26dÞ

where

P

a
b

sP/2 P/2

Fig. 8. Three-point bending beam with a mid-span notch.

Table 3
Calculated FI values using the GDC method for the three-point bend beam (Method B only).

a/b FI, numerical result Relative error (%) FI(a/b) Eq. (25)

b/lE = 4 8 16 32 64 b/lE = 4 8 16 32 64

0.125 N/A N/A 0.944 0.965 0.972 N/A N/A �5.1 �3.0 �2.3 0.995
0.25 N/A 1.013 1.005 1.003 1.001 N/A 0.5 �0.2 �0.4 �0.6 1.007
0.50 1.581 1.468 1.422 1.409 1.406 11.7 3.7 0.4 �0.5 �0.7 1.416
0.75 N/A 3.623 3.439 3.369 3.352 N/A 8.2 2.7 0.6 0.1 3.349
0.875 N/A N/A 9.469 9.075 8.929 N/A N/A 7.1 2.6 1.0 8.843
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FA
I ¼ FA

II ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� aA
p 1� 1

aB
1� EðkÞ

KðkÞ

� �� �
ð27aÞ

FB
I ¼ FB

II ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� aB
p 1� 1

aA
1� EðkÞ

KðkÞ

� �� �
ð27bÞ

with aA ¼ a=ðaþ cÞ, aB ¼ b=ðbþ cÞ, and k ¼ ffiffiffiffiffiffiffiffiffiffiffi
aAaB
p

and

KðkÞ ¼
Z p=2

0
ð1� k2 sin2 uÞ�1=2du ð28aÞ

EðkÞ ¼
Z p=2

0
ð1� k2 sin2 uÞ1=2du ð28bÞ

In the numerical solutions, we fix the length ratio of the two fractures to be a/b = 0.5 and investigate the effects of the mesh
refinement levels (b/lE = 4, 8, and 16) and the distance between the two fracture tips (c/b = 1/2, 1/4, 1/8, and 1/16 whenever
applicable). The finite element model is more than 50b long in each dimension to minimize the boundary effects. The numer-
ical results for the two crack tips A and B are summarized in Tables 4 and 5, respectively.

The trends observed in this series of results are similar to those from Sections 5.1 and 5.2. Method B of the GDC method is
more accurate for mode-I stress intensity than for mode-II. Even under pathological conditions, i.e. mesh coarseness limit
reached and strong numerical coupling between the two tips, the error is of the order of 10%. The accuracy for mode-II is
non-ideal but still acceptable for many applications. The only exceptions are when the two tips are only two elements away
from each other. In this situation, uh(2lE, 0) used in Eq. (19) for a tip is the displacement of the other tip, resulting in strong
numerical coupling between the two fractures. In these situations, Method A is more appropriate since it uses displacements
‘‘behind’’ fracture tips, where less numerical coupling between the two fractures is expected.

5.4. An infinite array of parallel fractures in an infinite plane

Consider the fracture configuration shown in Fig. 10 where an infinite array of parallel finite-length cracks are periodically
arranged on an infinite plane subjected to far-field stress. The interaction between fractures tends to reduce mode-I stress
intensity but enhance mode-II stress intensity. The stress intensity factors are KI ¼ r

ffiffiffiffiffiffi
pa
p

FIða=hÞ and KII ¼ s
ffiffiffiffiffiffi
pa
p

FIIða=hÞ
where FI and FII are the crack configuration correction factors as functions of the crack length and the interval between neigh-
boring cracks. The analytical solutions for FI and FII are unavailable but well-accepted numerical solutions are presented in
[1] and are plotted as continuous curves in Fig. 11. In the FEM solution of this study, we investigate the effects of mesh
refinement level (a/lE = 16, 8, 4, and 2) and distance between adjacent fractures (a/h). Due to the periodicity of the

Fig. 9. Two finite-length fractures along a single line in an infinite plane.

Table 4
Calculated stress intensity for the two-fracture case at crack tip A (Method B only).

b/c FI, numerical result FI, relative error (%) FII, numerical result FII, relative error (%) FI, FII anly. solu.

b/lE = 4 8 16 b/lE = 4 8 16 b/lE = 4 8 16 b/lE = 4 8 16

2 1.027 1.036 1.041 �1.5 �0.6 �0.2 0.975 1.015 1.035 �6.5 �2.7 �0.7 1.043
4 1.044 1.071 1.090 �5.1 �2.7 �0.9 0.318 1.004 1.068 �71.1 �8.7 �2.9 1.100
8 1.137c 1.113 1.163 �5.6c �7.7 �3.5 N/A 0.246 1.076 N/A �79.6 �10.7 1.206

16 N/A 1.249c 1.248 N/A �9.3c �9.3 N/A N/A 0.185 N/A N/A �86.5 1.377
32 N/A N/A 1.445c N/A N/A �11.4c N/A N/A N/A N/A N/A N/A 1.632
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configuration, only one crack and the surrounding medium need to be included in the mesh with appropriate periodic
boundary conditions applied. The width of the mesh is more than 50 times the crack length to minimize the effects of
the far-field lateral boundaries. As shown in Fig. 11, the results of the GDC methods (Method B only) are fairly accurate
for mode-I with relative errors below 10%. The results for mode-II are less accurate and the most significant factor affecting

Table 5
Calculated stress intensity for the two-fracture case at crack tip B (Method B only).

b/c FI, numerical result FI, relative error (%) FII, numerical result FII, relative error (%) FI, FII anly. solu.

b/lE = 4 8 16 b/lE = 4 8 16 b/lE = 4 8 16 b/lE = 4 8 16

2 1.078 1.113 1.122 �4.2 �1.1 �0.3 0.978 1.058 1.098 �13.1 �6.0 �2.5 1.126
4 1.117 1.197 1.238 �11.2 �4.8 �1.5 �0.526 1.038 1.177 �142 �17.4 �6.3 1.257
8 1.304c 1.287 1.387 �10.9 c �12.1 �5.2 N/A �0.370 1.204 N/A �125 �17.7 1.464

16 N/A 1.533c 1.541 N/A �12.9 c �12.5 N/A N/A �0.270 N/A N/A �115 1.761
32 N/A N/A 1.878 c N/A N/A �13.4 c N/A N/A N/A N/A N/A N/A 2.169

c Limit of the mesh coarseness reached where only one element exist between tip A and tip B. KII cannot be calculated at this level of mesh refinement
using Method B.

Fig. 10. Parallel finite-length fractures in an infinite plane.
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Fig. 11. Comparison of the GDC method results and well-accepted reference numerical solutions [1]. The latter are shown as continuous curves and they
have an estimated error of less than 1%. a/(a + h) is used as the horizontal axis to be consistent with the notation in [1]. Note that a/(a + h) = 1/(1 + h/a).
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the accuracy is h/lE. When h/lE = 4 (i.e. eight elements between adjacent cracks), the relative error can be as high as 30% for
large a/h values, but the ascending trend of the FII � a/(a + h) curve can still be reproduced. When h/lE = 2, the relative error
becomes unacceptably large and fails to represent the general trend of the FII � a/(a + h) curve. Among all the numerical
cases, the shortest distance between neighboring cracks is 4lE (i.e. h/lE = 2). If the neighboring cracks are only 2lE apart, Meth-
od B for mode-I will fail because all the displacement components used in Eq. (18) would be zero due to the symmetry of the
problem, yielding zero stress intensity. This condition dictates the largest element size that can be used for mode-I.

6. The effects of mesh configurations and the Poisson’s ratio

In all the numerical examples in Sections 4 and 5, the Poisson’s ratio is assumed to be 0.2. As shown in Eq. (1), the
Poisson’s ratio is related to the value of b thereby affecting the near-tip displacement field. As mentioned in Section 3,
the accuracy of the GDC method (without enhancement through the correction multipliers) depends on the ability of the
finite element in representing the near-field displacement field. Therefore, it is expected that the values of CI and CII are
dependent on the Poisson’s ratio. We repeat the numerical examples on a single fracture in an infinite plane in Section 4 with
Poisson’s ratios ranging from 0 to 0.4, and the correction multipliers required for obtaining accurate SIF’s for different mesh
refinement levels are shown in Fig. 12. A unified regression model is established by assuming the two constants in Eq. (20) to
vary linearly with respect to the Poisson’s ratio, and the regression results are

CB
I ¼

1:226þ 0:206mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð0:349� 1:125mÞlE=a

p ð29aÞ

CB
II ¼

1:737� 0:048mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð0:874� 0:179mÞlE=a

p ð29bÞ

The effects of the Poisson’s ratio are more significant for mode-I than for mode-II. Even for mode-I, ignoring these effects by
using the correction multipliers for m = 0.2 introduces less than 4% incremental error to the calculated SIF’s for arbitrary Pois-
son’s ratio.

The correction multipliers are also dependent on the near-tip mesh configuration. All the previous numerical examples
are based on the mesh configuration shown in Fig. 5a where eight triangular elements are connected to the tip node. The
other thee configurations in Fig. 5 are also common in FEM analysis. We repeat the numerical analysis in Section 4 with
the additional mesh configurations to determine the correction multipliers for different configurations and the results for
a Poisson’s ratio of 0.2 are shown in Fig. 13. Note that mesh-i, mesh-ii, and mesh-iii use the same space discretization scheme
with the only difference among them being in the location of the crack tip and the crack orientation. For a given mesh, the lE
value of mesh-iii is

ffiffiffi
2
p

times larger than that for mesh-i and mesh-ii. To use mesh configuration iv, lE in Eq. (18) is replaced
with l0E

ffiffiffi
3
p

lE=2. This constrains the solution to only use the displacements of points within two element layers of the tip.
The trend of the variation of the correction multipliers with respect to the mesh refinement level is the same for all the

mesh configurations. The curves become relatively flat when a/lE > 8. In configurations i and iii, the near-tip region is discret-
ized into eight elements in the angular direction while it is discretized into four elements for mesh-ii. Better refinement in
the angular direction improves the displacement field representation, yielding correction multipliers closer to unity. In the
region with a radius of 2lE around the tip, more elements are involved in mesh-iii than in mesh-i (the mesh is the same for
these two configurations but lE for mesh-iii is longer), enabling a better displacement field representation. Despite these
observations, the effects of the mesh configurations on the correction multipliers are moderate. If we used the correction
multipliers for mesh-i on mesh configuration ii, it would induce an error of 4%.

(a) (b)
Fig. 12. The effects of the Poisson’s on the correction multipliers for (a) mode-I and (b) mode-II at different mesh refinement levels. The effects on CII are
small and the regression curves are not plotted. Only the results for Method B are shown.
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Additionally, though all the examples in this paper are for plane-stress conditions using Method B, application of the gen-
eralized Method B to plane-strain conditions or Method A to plane-strain and plane-stress conditions is straightforward.

7. The effects of mesh perturbation

In the previous numerical examples, the finite meshes are all based on regular grids and the fractures align with the grids.
In this section, we investigate the effects of mesh perturbation on the accuracy of the GDC method. Only the mesh pattern
shown in Fig. 5a is tested but the qualitative observations should apply to all mesh patterns. A mesh perturbation factor d is
introduced to quantify the degree of perturbation. The x- and y-coordinates of each end-edge node is moved from its original
location in the regular mesh by a distance that follows a uniform distribution between –dlE and dlE. The mid-edge nodes are
moved accordingly. The nodes along external boundaries and existing fractures are not perturbed in order to maintain the
geometrical configurations of the system. Three levels of perturbation with d = 0.1, 0.2, and 0.3 are considered. For a given
level of perturbation, different mesh patterns can be obtained by altering the seed value for the random number generator
used in the meshing routine. Eight individual and independent random realizations are analyzed as a simple random sample
for each perturbation level. Both Method A and Method B are evaluated in this section wherever appropriate. For the per-
turbed mesh, we still use the characteristic element size parameter lE of the parent regular mesh, which is essentially the
average element size in the perturbed mesh. The correction factors derived based on the regular mesh are applied.

The two fracture-loading configurations investigated in Sections 5.1 and 5.3, representing fracture-boundary and frac-
ture-fracture interactions, respectively, are assessed. These two configurations are termed the ‘‘finite strip’’ case and ‘‘dual
fracture’’ case in the following description. One relatively coarse mesh resolution is used for each case. For the finite strip
scenario, b/lE = 16 and a/lE = 12, so the distance between the fracture tip and the lateral boundary is approximately four times
the element size. One of the reference points used by Method B for mode-II is at the middle point between the fracture tip
and the free surface boundary, not strictly speaking in the near-tip region. The error for this particular case is approximately
31% as shown in Table 2-B, and Method B for mode-II is inappropriate for this particular case. We present the results with
mesh perturbation for this case anyway for the sake of completeness, but this limitation should be born in mind. For the dual
fracture scenario, b/lE = 8, a/lE = 4, and c = lE, so there is only two elements between the two fracture tips, which made Method
B for mode-II inapplicable because one of the reference points for a fracture tip is at the tip of the other tip, as illustrated by
the very poor results corresponding to this particular scenario in Table 4 (bold font). Therefore, KII using Method B for the
second fracture-loading configuration is not pursued here. The mesh patterns and locations of reference points are illustrated
in Fig. 14.
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Fig. 13. The effects of near-tip mesh configurations on the correction multipliers for (a) mode-I and (b) mode-II at different mesh refinement levels.

Fig. 14. Perturbed mesh and location of reference points. (a–c) are all based on the finite strip configuration in Section 5.1 and they have perturbation factor
d = 0.1, 0.2, and 0.3, respectively; (d) is based on the dual fracture configuration investigated in Section 5.3 and only the mesh for d = 0.3 is shown. Note that
reference points for Method B on perturbed mesh generally do not coincide with nodes.
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The calculation results of the GDC method for individual random realizations of different mesh perturbation levels are
shown in Figs. 15 and 16, for the finite strip case and the dual fracture case, respectively. Considering the stochastic nature
of mesh perturbation, we also present some statistical analysis results in Tables 6A and 6B. As expected, mesh perturbation
affects the GDC calculation results in a random manner, with a greater degree of perturbation causing greater variation of SIF
results. Mode-II results seem to be more sensitive to mesh perturbation that mode-I results. The mean of SIF results by Meth-
od A appears to be unaffected by mesh perturbation, whereas mesh perturbation slightly increases the mean of mode-I SIF by
Method B. Note that the results of mode-II SIF by Method B for both cases tested are inherently inaccurate due to inadequate
mesh resolution for these particular cases. The results for the finite strip case are shown here only to illustrate the additional
errors induced by mesh perturbation. In most cases, even relatively severe mesh perturbation induces less than 10% addi-
tional error, whereas practical needs for mesh perturbation more severe than d = 0.3 are very rare. More importantly, these
numerical examples demonstrate that the GDC method is reasonably robust and its general accuracy does not rely on the
symmetry or regularity of meshing.

8. Concluding remarks

Compared with the original displacement-based methods for calculating stress intensity factors, the generalized displace-
ment correlation (GDC) method proposed in this paper has two advantages: (1) It is designed to work with conventional
finite element types, and (2) it uses a homogeneous mesh without local refinement around fracture tips. The former feature
makes it convenient to implement the new method in existing finite element packages. The latter is important for modeling
dynamic fracture propagation problems where the locations of fractures are not known a priori. These two features are crit-
ical to engineering applications where adopting special element types and local refinement are impractical, such as in the
simulation of hydraulic fracturing in complex natural fracture systems.

We propose two suites of formulations, termed Method A and Method B, for the GDC method. The former utilizes dis-
placement information within one layer of elements around the fracture tip, and requires quadratic or higher-order finite
elements. The latter can work with any element types, but requires displacements within two layers of elements. To enhance

Fig. 15. Results of the GDC method for the finite strip case with perturbed meshes. (a) Results for Method A; (b) results for Method B. Each data point
represents one random realization of a mesh perturbation level. The horizontal coordinates of some data points are slightly offset to enable visually
separating mode-I and mode-II data points. The margins for 10% relative error are shown in this figure.

Fig. 16. Results of the GDC method for the dual fracture case with perturbed meshes. (a) Results for Method A; (b) results for method B. Results for mode-II
with method B are not presented for reasons described above.
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accuracy of both methods, a correction multiplier is also proposed. Without this correction term, the accuracy of the GDC
method is limited due to the inability of regular finite element types to accurately represent the near-tip displacement field.
Through a series of numerical examples with a variety of crack configurations, we find that that the new GDC method is
acceptably accurate for calculating mode-I stress intensity factors. Even in the limit of mesh coarseness when there is only
one element between the two tips of the adjacent fractures, the error is of the order of 10%. The accuracy of Method B for
mode-II is less than for mode-I, but acceptable results for most engineering applications, especially for geo-engineering
applications, can be obtained even with coarse meshes. Severe errors are inevitable if the points where displacements are
used for the calculation are very close to other fracture tips or boundaries of the computation domain. However, this is
not unique to the GDC method, and other comparable methods suffer under the same conditions because the near-tip region
is inadequately resolved. To correctly model these problems (e.g. tips close to each other or to the boundaries), sufficiently
fine meshes must be adopted.

We found that the correction factor is a function of a number of variables for a give near-tip mesh configuration, including
fracture length relative to element size, the Poisson’s ratio, and random mesh perturbation. However, if we ignore these ef-
fects, by using correction factors derived for infinitely long fractures with a nominal Poisson’s ratio of 0.2 on a regular mesh,
the error is still likely to be within 10%.

Only the correction multipliers for quadratic six-node triangle elements are presented in this paper. Correction multipli-
ers for any combination of element type and mesh configuration can be easily determined through a small number of FEM
simulations following the procedure in Section 4. Only one crack-loading configuration needs be considered, and the resul-
tant correction multipliers can be used in arbitrary fracture-load configurations with the same mesh.

Acknowledgments

This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344. The work of Fu and Carrigan in this paper was supported by the Geothermal Technol-
ogies Program of the US Department of Energy, and the work of Johnson and Settgast was supported by the LLNL LDRD pro-
ject ‘‘Creating Optimal Fracture Networks’’ (#11-SI-006). This paper is LLNL report LLNL-JRNL-501931. We also would like to
credit the two anonymous reviewers for advice leading to significant quality improvement of the paper.

References

[1] Tada H, Paris PC, Irwin GR. The stress analysis of cracks handbook. New York: ASME; 2000.
[2] Rice JR. A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 1968;35:379–86.
[3] Parks DM. A stiffness derivative finite element technique for determination of crack tip stress intensity factors. Int J Fract 1974;10(4):487–502.
[4] Chan SK, Tuba IS, Wilson WK. On the finite element method in linear fracture mechanics. Engng Fract Mech 1970;2(1):1–17.
[5] Banks-Sills L, Sherman D. Comparison of methods for calculating stress intensity factors with quarter-point elements. Int J Fract 1986;32(2):127–40.
[6] Banks-Sills L, Einav O. On singular, nine-noded, distorted, isoparametric elements in linear elastic fracture mechanics. Comput Struct

1987;25(3):445–9.

Table 6A
GDC results for the finite strip case with various levels of mesh perturbation.

Theoretical GDC results

d = 0 d = 0.1 d = 0.2 d = 0.3

Mean St. dev. Mean St. dev. Mean St. dev.

Method A FI 1.624 1.612 1.616 0.029 1.611 0.054 1.626 0.111
FII 1.624 1.621 1.622 0.050 1.617 0.094 1.651 0.203

Method B FI 1.624 1.618 1.638 0.016 1.654 0.032 1.667 0.046
FII 1.624 1.124d 1.114 0.035 1.095 0.063 1.040 0.102

d Poor results due to inappropriate mesh resolution, as explained in Section 5.1.

Table 6B
GDC results for the dual fracture case with various levels of mesh perturbation.

Theoretical GDC results

d = 0 d = 0.1 d = 0.2 d = 0.3

Mean St. dev. Mean St. dev. Mean St. dev.

Method A FI 1.206 1.209 1.215 0.012 1.211 0.017 1.196 0.035
FII 1.206 1.205 1.194 0.036 1.169 0.081 1.134 0.095

Method B FI 1.206 1.116 1.133 0.014 1.145 0.024 1.149 0.036
FII 1.206 N/A N/A N/A N/A N/A N/A N/A

106 P. Fu et al. / Engineering Fracture Mechanics 88 (2012) 90–107



Author's personal copy

[7] Zhu WX, Smith DJ. On the use of displacement extrapolation to obtain crack tip singular stresses and stress intensity factors. Engng Fract Mech
1995;51(3):391–400.

[8] Barsoum RS. On the use of isoparametric finite elements in linear fracture mechanics. Int J Numer Meth Engng 1976;10(1):25–37.
[9] Shih CF, deLorenzi H, German MD. Crack extension modeling with singular quadratic isoparametric elements. Int J Fract 1976;12(3):647–51.

[10] Tracey DM. Discussion of ‘on the use of isoparametric finite elements in linear fracture mechanics’ by R.S. Barsoum. Int J Numer Meth Engng
1977;11(2):401–2.

[11] Li FZ, Shih CF, Needleman A. A comparison of methods for calculating energy release rates. Engng Fract Mech 1985;21(2):405–21.
[12] Lim I, Johnston IW, Choi SK. On stress intensity factor computation from the quarter-point element displacements. Commun Appl Numer Meth

1992;8(5):291–300.
[13] Lim I, Johnston IW, Choi SK. Comparison between various displacement-based stress intensity factor computation techniques. Int J Fract

1992;58(3):193–210.
[14] Courtin S, Gardin C, Bezine G, Ben-Hadj-Hamouda H. Advantages of the J-integral approach for calculating stress intensity factors when using the

commercial finite element software ABAQUS. Engng Fract Mech 2005;72(14):2174–85.
[15] Henshell RD, Shaw KG. Crack tip finite elements are unnecessary. Int J Numer Meth Engng 1975;9(3):495–507.
[16] Barsoum RS. Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements. Int J Numer Meth Engng 1977;11(1):85–98.
[17] Ingraffea AR, Manu C. Stress-intensity factor computation in three dimensions with quarter-point elements. Int J Numer Meth Engng

1980;15(10):1427–45.
[18] Banks-Sills L, Bortman Y. Reappraisal of the quarter-point quadrilateral element in linear elastic fracture mechanics. Int J Fract 1984;25(3):169–80.
[19] Yehia NAB, Shephard MS. On the effect of quarter-point element size on fracture criteria. Int J Numer Meth Engng 1985;21(10):1911–24.
[20] Lynn PP, Ingraffea AR. Transition elements to be used with quarter-point crack-tip elements. Int J Numer Meth Engng 1978;12(6):1031–6.
[21] Banks-Sills L. Update: application of the finite element method to linear elastic fracture mechanics. Appl Mech Rev 2010;63(2):020803.
[22] Fu PC, Johnson SM, Carrigan CR. Simulating complex fracture systems in geothermal reservoirs using an explicitly coupled hydro-geomechanical

model. In: Proceedings of the 45th US rock mechanics/geomechanics symposium, 11-244, San Francisco, CA, June 26–29; 2011.
[23] Guinea GV, Planas J, Elices M. KI evaluation by the displacement extrapolation technique. Engng Fract Mech 2000;66(3):243–55.
[24] Williams MD, Jones R, Goldsmith GN. An introduction to fracture mechanics – theory and case studies. In: Transactions of mechanical engineering, vol.

ME 14, IEAust, Australia, No. 4; 1989.
[25] Harrop LP. The optimum size of quarter-point crack tip element. Int J Numer Meth Engng 1982;18(7):1101–3.
[26] Srawley JE. Wide range stress intensity factor expressions for ASTM E 399 standard fracture toughness specimens. Int J Fract 1976;12(3):475–6.

P. Fu et al. / Engineering Fracture Mechanics 88 (2012) 90–107 107


